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Abstract

Purpose – To highlight the effect of viscous and Joule heating on different ionized gases in the
presence of magneto and thermal radiation effects.

Design/methodology/approach – The conservation equations are written for the MHD forced
convection in the presence of thermal radiation. The governing equations are transformed into non-similar
form using a set of dimensionless variables and then solved numerically using Keller box method.

Findings – The increasing of fluid suction parameter enhances local Nusselt numbers, while the
increasing of injection parameter decreases local Nusselt numbers. The inclusion of thermal radiation
increases the heat transfer rate for both ionized gases suction or injection. The presence of magnetic
field decreases the heat transfer rate for the suction case and increases it for the injection case. Finally,
the heat transfer rate is decreased due to viscous dissipation.

Research limitations/implications – The combined effects of both viscous and Joule heating on
the forced convection heat transfer of ionized gases for constant surface heat flux surfaces can be
investigated.

Practical implications – A very useful source of coefficient of heat transfer values for engineers
planning to transfer heat by using ionized gases.

Originality/value – The viscous and Joule heating of ionized gases on forced convection heat
transfer in the presence of magneto and thermal radiation effects are investigated and can be used by
different engineers working on industry.
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Nomenclature
a ¼ Stefan-Boltzmann constant
B0 ¼ magnetic field flux density, Wb/m2

Cfx ¼ local skin friction factor
cp ¼ specific heat capacity
f ¼ dimensionless stream function
Ec ¼ Eckert number, u2

1=cpðTw 2 T1Þ
Ec0 ¼ modified Eckert number, EcPr
g ¼ gravitational acceleration

h ¼ heat transfer coefficient
k ¼ thermal conductivity
L ¼ length of the plate
Ha2

x ¼ magnetic influence number, sB2
0x=ry

Nux ¼ local Nusselt number, hx/k
Nu ¼ average Nusselt numbers, �hL=k
p ¼ pressure
Pr ¼ Prandtl number
qw(x) ¼ local surface heat flux
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1. Introduction
An ionized gas, whether it occurs as a result of an elevation of temperature or by
suitable seeding process, is electrically conductive radiate and influenced by different
magnetic fields. The study of magnetohydrodynamic viscous radiate flows has
important industrial, technological and geothermal applications such as
high-temperature plasmas, cooling of nuclear reactors, liquid metal fluids, MHD
accelerators, and power generation systems. The MHD-forced convection heat transfer
problems have been studied by Sparrow and Cess (1961), Romig (1964), Garandet et al.
(1992), and Takhar and Ram (1994). The effect of radiation on heat transfer problems
has been studied by Soundalgekar et al. (1960), Hossain and Takhar (1996), Hossain
et al. (1999), and Raptis (2001). A set of nonsimilar solutions for different mixed
convection heat transfer boundary layers for different geometries embedded in
saturated porous medium has been developed by Aldoss et al. (1993a, b, 1994), Hsich
et al. (1993) and Duwairi et al. (1997). Recently, Raptis and Perdikis (2000) investigated
the MHD free convection flow in the presence of thermal radiation, Duwairi and
Damseh (2004a, b) studied both effects on natural convection and mixed convection
heat transfer problems with fluid suction or injection from vertical surfaces, Duwairi
(2004) studied the effect of both magneto forces and thermal radiation on forced
convection heat transfer from constant surface heat flux surfaces in the absence of
viscous and Joule heating effects.

In the present analysis, a non-similar solution for the viscous and Joule heating
effects on forced convection flow of ionized gases is investigated. The governing
equations are transformed using a set of dimensionless variables and then solved
numerically using Keller box method.

2. Analysis
The analysis is carried out for the case of uniform surface temperature Tw which is
placed in a fluid at temperature T1 with free stream velocity u1 and in a uniform
magnetic field B0 (independent of x). The x coordinate is measured from the leading
edge of the plate, the y coordinate is measured normal to the plate and u and v are the
corresponding velocities in the x and y directions, respectively, vw is the suction or
injection velocity. The flow is steady, laminar, incompressible and two-dimensional,

Rex ¼ local Reynolds number, u1x=y
Pex ¼ local Peclet number, u1x=a
Rd ¼ conduction-radiation parameter,

kaR=4aT3
1

T ¼ temperature
T1 ¼ free stream temperature
Tw ¼ wall temperature
u,v ¼ velocity components in x-and

y-directions
u1 ¼ free stream velocity
vw ¼ porous wall suction or injection velocity
x,y ¼ axial and normal coordinates

Greek symbols
a ¼ thermal diffusivity

aR ¼ Rosseland mean absorption coefficient
b ¼ coefficient of thermal expansion,

21=rð›r=›TÞp

x ¼ non-similarity parameter,
ð22vw=u1ÞPe1=2

x
h ¼ pseudo-similarity variable
Q ¼ dimensionless temperature
Qw ¼ ratio of surface temperature to the

ambient temperature, Tw/T1

y ¼ kinematic viscosity
r ¼ fluid density
s ¼ electrical conductivity
tw ¼ local wall shear stress
c ¼ dimensional stream function
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the fluid is assumed to be gray, emitting and absorbing heat but not scattering. These
conditions do not lead to a similar solution of the laminar boundary-layer equations.
Therefore, solutions of the governing equations have been obtained utilizing a
non-similar approach. Under boundary layer and Rosseland diffusion approximations,
the extended continuity, momentum and energy equations by Holman (1999) are

›u

›x
þ

›v

›y
¼ 0 ð1Þ

r u
›u

›x
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›u
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0ðu2 u1Þ ¼ m
›2u

›y 2
ð2Þ
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The radiation heat transfer fluxes for an optically thick fluid are included in the energy
equation as described by Ali et al. (1984). The boundary conditions can be written as

y ¼ 0; u ¼ 0; v ¼ ^vw; T ¼ Tw

y!1; u ¼ u1; T ¼ T1

ð4Þ

The minus sign for the conductive gray fluid vertical velocity means the suction from
the porous wall, where the plus sign means the gray fluid injection. In the above
system of equations and in order to satisfy the continuity equation define the stream
function as u ¼ ›c=›y; and v ¼ 2›c=›x; the following dimensionless variables are
also introduced in the transformation

h ¼ ðy=xÞPe1=2
x ; x ¼ xðxÞ ð5Þ

c ¼ aPe1=2
x f ðx;hÞ; Qðx;hÞ ¼

T 2 T1

Tw 2 T1

ð6Þ

Using the non-similar variables equations (5) and (6) in the governing equations
((1)-(4)), the momentum and energy equations are

f 000 þ ð1=2Þff 00 þ
Ha2

x

Rex
ð1 2 f 0Þ ¼ ð1=2Þx f 0

›f 0

›x
2 f 00

›f

›x

� �
ð7Þ

Q00 þ ð4=3RdÞð1 þ ðQw 2 1ÞQÞ3
� �

Q0
� �0

þð1=2ÞfQ0 þ
Ha2

x

Rex
Ec0ð f 0Þ2 þ Ec0ð f 00Þ2

¼ ð1=2Þx f 0
›Q

›x
2Q0 ›f

›x

� � ð8Þ

where

xðxÞ ¼ 2ð2vw=u1ÞPe1=2
x
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the corresponding boundary conditions are

f 0ðx; 0Þ ¼ 0; f ðx; 0Þ ¼ ^x; Qðx; 0Þ ¼ 1

f 0ðx;1Þ ¼ 1; Qðx;1Þ ¼ 0
ð9Þ

The corresponding dimensionless groups appeared in the governing equations are
Ha2

x ¼ sB2
0x=ry ; Ec ¼ u2

1=cpðTw 2 T1Þ; Pr ¼ y=a; Ec0 ¼ EcPr;Qw ¼ Tw=T1; and
Rd ¼ kaR=4aT3

1: The minus sign for the boundary condition means the injection
where the plus sign means the gray fluid suction through the porous wall. The primes
denote partial differentiations with respect to h. Note that the nonsimilar parameter
x(x) will reflect the effect of the gray fluid suction or injection from the porous plate,
and the case x ¼ 0 means that the plate is impermeable. The conduction-radiation
parameter Rd will reflect the effect of absent radiation from the porous wall and
between the gray fluid layers on the MHD forced convection heat transfer problem
under consideration, the radiation effect is absent when Rd !1: Note that the
Joule and viscous dissipation heating effects appeared in the energy equation as
Ha2

x=RexEc0 and Ec0. The values of Ha2
x=Rex are assigned 0 to remove these effects.

Some of the physical quantities of practical interest include the velocity component u
and v in the x- and y-directions, the wall shear stress, tw ¼ mð›u=›yÞy¼0; and the
surface heat flux qwðxÞ ¼ 2{kþ ð16a=3aRÞT

3}ð›T=›yÞy¼0 ¼ hðTw 2 T1Þ: They are
given by

u ¼ u1f
0ðx;hÞ ð10Þ

v ¼ 2vwx
21 f ðx;hÞ þ 2x

›f

›x
2 hf 0ðx;hÞ

� �
ð11Þ

Cf xPr21Pe1=2
x ¼ 2f 00ðx; 0Þ ð12Þ

NuxPe21=2
x

1 þ ð4=3RdÞQ
3
w

	 
 ¼ 2Q0ðx; 0Þ ð13Þ

The average Nusselt numbers along the porous plate can be obtained from the local
Nusselt number, equation (13). The end result is given by

NuPe
21=2
L

1 þ ð4=3RdÞQ
3
w

	 
 ¼ 22x21
L

Z xL

0

Q0ðx; 0Þ dx ð14Þ

where xL and PeL are the xx and Pex calculated at x ¼ L

3. Numerical solutions
The partial differential equations ((7) and (8)) under the boundary conditions (9) are
solved numerically by using an implicit iterative tridiagonal finite-difference method
(Cebeci and Bradshaw, 1984). In this method, any quantity g at point (xn, hj) is written
as gnj : Quantities and derivatives at the midpoints of grid segments are approximated
to second order as
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g
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j ¼

1

2
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j

	 

; gnj21=2 ¼

1

2
gnj þ gnj21

	 

ð15Þ

›g

›x

� �n21=2

j

¼ Dx21 gnj 2 gn21
j

	 

; ðg0Þ

n
j21=2 ¼ Dh21 gnj 2 gnj21

	 

ð16Þ

where g is any dependent variable and n and j are the node locations along the x and h
directions, respectively. First the third-order partial differential equation is converted
in the first order by substitutions f 0 ¼ s; and s0 ¼ w; the difference equations that are
to approximate the previous equations are obtained by averaging about the midpoint
ðxn;hj21=2Þ; and those to approximate the resulting equations by averaging about
ðxn21=2;hj21=2Þ: At each line of constant x, a system of algebraic equations is obtained.
With the nonlinear terms evaluated at the previous station, the algebraic equations are
solved iteratively. The same process is repeated for the next value of x and the problem
is solved line by line until the desired x value is reached. A convergence criterion based
on the relative difference between the current and previous iterations is employed.
When this difference reaches 1025, the solution is assumed to have converged and the
iterative process is terminated. The effect of the grid size Dh and Dx and the edge of
the boundary layer h1 on the solution had been examined. The results presented here
are independent of the grid size and the h1 up to the fourth decimal point.

The accuracy of the selected method is tested by comparing the results with those of
the classical forced-convection problem over a vertical isothermal permeable plate
(Holman, 1999). Table I shows a comparison between the Nusselt numbers, it is seen
that the present results are in a good agreement.

4. Results and discussion
In this paper, the viscous and Joule heating effects on forced convection flow of ionized
gas adjacent to radiate porous wall are investigated. Figures 1 and 2 show the
dimensionless velocity and temperature profiles inside the boundary layer for different
suction parameter x ¼ 1; 3 or injection parameter x ¼ 21;23 and Qw ¼ 1:5; Rd ¼ 1;
Ec0 ¼ 0:005; Ha2

x=Rex ¼ 1: The increasing of suction parameter decreases the
boundary layer thickness and increases temperature gradients, so the heat transfer
rates are enhanced. The increasing of the injection parameter increases the boundary
layer thickness and decreases temperature gradients near the porous wall, so the heat
transfer rates are decreased, note that the case of x ¼ 0 corresponds to the impermeable
radiate plate. The effects of the magnetic influence parameter Ha2

x=Rex ¼ 0; 1; 3

Nux=
ffiffiffiffiffiffiffi
Rex

p

x Present method Holman (18)

20.1 0.23895 0.2400
20.4 0.09878 0.0950
20.6 0.01057 0.0100
0.0 0.33234 0.3320
1.0 0.27632 0.2850
4.0 1.00327 1.0000
5.0 3.62368 3.6000

Table I.
Values of Nux=

ffiffiffiffiffiffiffi
Rex

p
Pr ¼

0:71; Rd !1; M ¼ 0
and Ec0 ¼ 0

Viscous and
Joule heating

effects

433



on both the dimensionless velocity and temperature profiles are drawn in Figures 3 and
4, respectively, for Qw ¼ 1:5; Rd ¼ 1; Ec0 ¼ 0:005; x ¼ 1;21: The increasing of the
magnetic influence parameter decreases the velocity inside boundary layer due to
retarding effect of magnetic forces on both suction or injection porous plates, also the

Figure 1.
Dimensionless velocity
profiles for different x

Figure 2.
Dimensionless
temperature profiles for
different x

HFF
15,5

434



heat transfer rates are decreased for the suction porous plate case and increased for the
injection porous plate case. The reason for this behavior is that the magnetic field had
negligible effects in raising the fluid temperature for the injection porous plate, and the
Joule heating effect can be neglected. The effects of the conduction-radiation parameter

Figure 3.
Dimensionless velocity

profiles for different
Ha2

x=Rex

Figure 4.
Dimensionless

temperature profiles for
different Ha2

x=Rex
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Rd ¼ 1; 5; 50 on the dimensionless temperature profiles are drawn in Figure 5 for
Qw ¼ 1:5; x ¼ 1;21; Ec0 ¼ 0:005; Ha2

x=Rex ¼ 1; it is found that the increasing of
conduction-radiation parameter increases temperature gradients near the porous wall
for both case of fluid suction or injection, which increases heat transfer rates, this is due
to the fact that radiation effects increase temperatures of ionized gases and the absence
of radiation defines small temperatures.

Figure 6 shows the effect of the viscous dissipation term Ec0 ¼ 0:001; 0:005; 0:01
included in the energy equation on the dimensionless temperature profiles for Qw ¼

1:5; x ¼ 1;21; Rd ¼ 1; Ha2
x=Rex ¼ 1: The increasing of modified Eckert numbers

broadens the temperature distribution inside the boundary layer and decreases heat
transfer rates. The effect of the surface temperature parameter Qw ¼ 1:1; 1:5; 2 is
shown in Figure 7 for Ec0 ¼ 1:5; x ¼ 1;21; Rd ¼ 1; Ha2

x=Rex ¼ 1; the increasing of
this parameter heats the conductive gray fluid and broadens the temperature inside the
boundary layer, however, the increasing of this parameter enhances heat transfer rate
as it appears from equations (13) and (14).

Figures 8 and 9 show the variation of local Nusselt numbers for different
conduction-radiation parameter and different magnetic influence parameter. Figure 8
shows that the increasing of suction parameter enhances local Nusselt numbers, while
the increasing of injection parameter decreases local Nusselt numbers. The effect of
absent radiation from the porous wall is to decrease local Nusselt numbers, due to
important role played by radiation in transferring heat. Figure 9 shows that the
increasing of magnetic influence parameter increases local Nusselt numbers for
the injection case and decreases it for the suction case, this is due to negligible Joule
heating effect and important retardation of magneto forces during fluid injection.

Figure 5.
Dimensionless
temperature profiles for
different Rd
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Figure 7.
Dimensionless

temperature profiles for
different Qw

Figure 6.
Dimensionless

temperature profiles for
different Ec0
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Figure 9.
Local Nusselt number
variations for different
Ha2

x=Rex

Figure 8.
Local Nusselt number
variations for different Rd
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Also it is due to the important Joule heating effect and negligible retardation of
magneto forces during fluid suction.

5. Conclusions
In this paper numerical solutions are presented for viscous and Joule heating effects on
forced convection flow of ionized gases adjacent to isothermal porous surfaces. The
partial differential equations are transformed into non-similar boundary layer
equations which are solved by Keller box method, and it is found that:

(1) The increasing of fluid suction parameter enhances local Nusselt numbers,
while the increasing of injection parameter decreases local Nusselt numbers;
this is due to small and large thermal boundary layer thicknesses, respectively.

(2) The presence of radiation serves to introduce two extra parameters into the
problem, the Rd and Qw. An increase in Rd serves to decrease the heat
transfer rate, due to negligible an important role played by radiation in
transferring heat between ionized gas layers, while the increase in Qw serves to
decrease temperature gradient near porous wall and increases local Nusselt
numbers.

(3) The presence of magnetic field decreases the heat transfer rate for the suction
case and increases it for the injection case; this is due to negligible Joule heating
effect for the injection porous plate.

(4) Finally, the heat transfer rate is decreased due to viscous dissipation effect in
heating ionized gases for both cases of fluid suction or injection.
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